

Welcome to Ceilometer-PowerVM’s documentation!

This project will provide Ceilometer-compatible compute agent plugins
for monitoring instance utilization and statistics on PowerVM systems.

Documentation on Ceilometer can be found at the Ceilometer documentation [http://docs.openstack.org/developer/ceilometer].

Ceilometer-PowerVM Information and Configuration

Contents:

	Team and repository tags

	Support for PowerVM Performance Monitoring

Ceilometer-PowerVM Policies

Contents:

	Ceilometer-PowerVM Policies

Ceilometer-PowerVM Devref

Contents:

	Developer Guide

Team and repository tags

[image: _images/ceilometer-powervm.svg]
 [http://governance.openstack.org/reference/tags/index.html]

Support for PowerVM Performance Monitoring

The IBM PowerVM hypervisor provides virtualization on POWER hardware.
PowerVM customers can see benefits in their environments by making use
of OpenStack. This project implements a Ceilometer-compatible compute
inspector. This inspector, along with the PowerVM Nova driver and Neutron
agent, provides capability for PowerVM customers to natively monitor
utilization and statistics for instances running on OpenStack-managed systems.

Problem Description

PowerVM supports a variety of performance monitoring interfaces within
the platform, providing virtual machine and system monitoring data.
Ceilometer-powervm implements a Ceilometer-based compute inspector for the
PowerVM hypervisor.

Inspector Description

The Ceilometer compute agent provides an inspector framework that allows
hypervisors to integrate support for gathering instance statistics and
utilization details into Ceilometer. This project provides a standard
Ceilometer virt inspector that pulls its data from the PowerVM Performance and
Capacity Monitoring (PCM) infrastructure.

This inspector retrieves instance monitoring data for cpu, network, memory, and
disk usage. Interactions with PowerVM PCM occur using the PowerVM REST API
stack through pypowervm [https://github.com/powervm/pypowervm], an open source python project.

This inspector requires that the PowerVM system be configured for management
via NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN].

End User Impact

The users of the cloud are able to see the metrics for their virtual machines.
As PowerVM deals with ‘disk buses’ rather than specific disks, the hard disk
data is reported at a ‘per bus’ level (i.e. each SCSI or Virtual Fibre Channel
bus).

Performance/Scalability Impacts

None.

Other deployer impact

The cloud administrator needs to install the ceilometer-powervm project on
their PowerVM compute node. It must be installed on the NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN] virtual
machine on the PowerVM system.

The cloud administrator needs to configure their ‘hypervisor_inspector’ as
powervm.

No other configuration is required.

Developer impact

None

Implementation

Assignee(s)

Primary assignee: thorst

Ongoing maintainer: thorst

Future lifecycle

Ongoing maintenance of the PowerVM compute inspector will be handled by the IBM
OpenStack team.

Dependencies

	The Ceilometer compute agent.

	The pypowervm [https://github.com/powervm/pypowervm] library.

	A NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN] enabled PowerVM system.

References

	Ceilometer Architecture:
http://docs.openstack.org/developer/ceilometer/architecture.html

	pypowervm: https://github.com/powervm/pypowervm

	NovaLink: http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN

	PowerVM REST API Initial Specification (may require a newer version
as they become available): http://ibm.co/1lThV9R

	PowerVM Virtualization Introduction and Configuration:
http://www.redbooks.ibm.com/abstracts/sg247940.html?Open

	PowerVM Best Practices:
http://www.redbooks.ibm.com/abstracts/sg248062.html?Open

Ceilometer-PowerVM Policies

In the Policies Guide, you will find documented policies for developing with
Ceilometer-PowerVM. This includes the processes we use for blueprints and specs,
bugs, contributor onboarding, and other procedural items.

Policies

	Ceilometer-PowerVM Bugs
	Bug Triage Process

	Contributing to Ceilometer-PowerVM

	Code Reviews
	Code Review Practices

	Team and repository tags

	Support for PowerVM Performance Monitoring
	Problem Description

	Inspector Description
	End User Impact

	Performance/Scalability Impacts

	Other deployer impact

	Developer impact

	Implementation
	Assignee(s)

	Future lifecycle

	Dependencies

	References

Indices and tables

	Index

	Module Index

	Search Page

Ceilometer-PowerVM Bugs

Ceilometer-PowerVM maintains all of its bugs in Launchpad [https://bugs.launchpad.net/ceilometer-powervm].
All of the current open Ceilometer-PowerVM bugs can be found in that link.

Bug Triage Process

The process of bug triaging consists of the following steps:

	Check if a bug was filed for a correct component (project). If not, either change the project
or mark it as “Invalid”.

	Add appropriate tags. Even if the bug is not valid or is a duplicate of another one, it still
may help bug submitters and corresponding sub-teams.

	Check if a similar bug was filed before. If so, mark it as a duplicate of the previous bug.

	Check if the bug description is consistent, e.g. it has enough information for developers to
reproduce it. If it’s not consistent, ask submitter to provide more info and mark a bug as
“Incomplete”.

	Depending on ease of reproduction (or if the issue can be spotted in the code), mark it as
“Confirmed”.

	Assign the importance. Bugs that obviously break core and widely used functionality should get
assigned as “High” or “Critical” importance. The same applies to bugs that were filed for gate
failures.

	(Optional). Add comments explaining the issue and possible strategy of fixing/working around
the bug.

Contributing to Ceilometer-PowerVM

If you would like to contribute to the development of OpenStack,
you must follow the steps in the “If you’re a developer, start here”
section of this page:

http://wiki.openstack.org/HowToContribute

Once those steps have been completed, changes to OpenStack
should be submitted for review via the Gerrit tool, following
the workflow documented at:

http://wiki.openstack.org/GerritWorkflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/ceilometer-powervm

Code Reviews

Code reviews are a critical component of all OpenStack projects. Code reviews provide a
way to enforce a level of consistency across the project, and also allow for the careful
onboarding of contributions from new contributors.

Code Review Practices

Ceilometer-PowerVM follows the code review guidelines [https://wiki.openstack.org/wiki/ReviewChecklist] as
set forth for all OpenStack projects. It is expected that all reviewers are following the guidelines
set forth on that page.

Team and repository tags

[image: ../_images/ceilometer-powervm.svg]
 [http://governance.openstack.org/reference/tags/index.html]

Support for PowerVM Performance Monitoring

The IBM PowerVM hypervisor provides virtualization on POWER hardware.
PowerVM customers can see benefits in their environments by making use
of OpenStack. This project implements a Ceilometer-compatible compute
inspector. This inspector, along with the PowerVM Nova driver and Neutron
agent, provides capability for PowerVM customers to natively monitor
utilization and statistics for instances running on OpenStack-managed systems.

Problem Description

PowerVM supports a variety of performance monitoring interfaces within
the platform, providing virtual machine and system monitoring data.
Ceilometer-powervm implements a Ceilometer-based compute inspector for the
PowerVM hypervisor.

Inspector Description

The Ceilometer compute agent provides an inspector framework that allows
hypervisors to integrate support for gathering instance statistics and
utilization details into Ceilometer. This project provides a standard
Ceilometer virt inspector that pulls its data from the PowerVM Performance and
Capacity Monitoring (PCM) infrastructure.

This inspector retrieves instance monitoring data for cpu, network, memory, and
disk usage. Interactions with PowerVM PCM occur using the PowerVM REST API
stack through pypowervm [https://github.com/powervm/pypowervm], an open source python project.

This inspector requires that the PowerVM system be configured for management
via NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN].

End User Impact

The users of the cloud are able to see the metrics for their virtual machines.
As PowerVM deals with ‘disk buses’ rather than specific disks, the hard disk
data is reported at a ‘per bus’ level (i.e. each SCSI or Virtual Fibre Channel
bus).

Performance/Scalability Impacts

None.

Other deployer impact

The cloud administrator needs to install the ceilometer-powervm project on
their PowerVM compute node. It must be installed on the NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN] virtual
machine on the PowerVM system.

The cloud administrator needs to configure their ‘hypervisor_inspector’ as
powervm.

No other configuration is required.

Developer impact

None

Implementation

Assignee(s)

Primary assignee: thorst

Ongoing maintainer: thorst

Future lifecycle

Ongoing maintenance of the PowerVM compute inspector will be handled by the IBM
OpenStack team.

Dependencies

	The Ceilometer compute agent.

	The pypowervm [https://github.com/powervm/pypowervm] library.

	A NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN] enabled PowerVM system.

References

	Ceilometer Architecture:
http://docs.openstack.org/developer/ceilometer/architecture.html

	pypowervm: https://github.com/powervm/pypowervm

	NovaLink: http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN

	PowerVM REST API Initial Specification (may require a newer version
as they become available): http://ibm.co/1lThV9R

	PowerVM Virtualization Introduction and Configuration:
http://www.redbooks.ibm.com/abstracts/sg247940.html?Open

	PowerVM Best Practices:
http://www.redbooks.ibm.com/abstracts/sg248062.html?Open

Developer Guide

In the Developer Guide, you will find information on how to develop for
Ceilometer-PowerVM and how it interacts with Ceilometer. You will also find
information on setup and usage of Ceilometer-PowerVM.

Internals and Programming

	Setting Up a Development Environment
	Getting the code

	Setting up your environment

	Usage

Testing

	Running Ceilometer-PowerVM Tests
	With tox
	PEP8 and Unit Tests

Indices and tables

	Index

	Module Index

	Search Page

Setting Up a Development Environment

This page describes how to setup a working Python development
environment that can be used in developing ceilometer-powervm.

These instructions assume you’re already familiar with
Git and Gerrit, which is a code repository mirror and code review toolset,
however if you aren’t please see this Git tutorial [https://git-scm.com/book/en/Getting-Started] for an introduction
to using Git and this guide [https://docs.openstack.org/infra/manual/developers.html#development-workflow] for a tutorial on using Gerrit and Git for
code contribution to Openstack projects.

Getting the code

Grab the code:

git clone git://git.openstack.org/stackforge/ceilometer-powervm
cd ceilometer-powervm

Setting up your environment

The purpose of this project is to provide the ‘glue’ between OpenStack
Telemetry (Ceilometer) and PowerVM. The pypowervm [https://github.com/powervm/pypowervm] project is used to
control and monitor PowerVM systems.

It is recommended that you clone down the OpenStack Ceilometer project along
with pypowervm into your respective development environment.

Running the tox python targets for tests will automatically clone these down
via the requirements. When run with tox, it pulls the necessary requirements
into a virtualenv.

Additional project requirements may be found in the requirements.txt file.

Usage

	Configure the PowerVM system for NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN]

	Install the ceilometer-powervm plugin on the NovaLink [http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS215-262&appname=USN] VM on the PowerVM
Server.

	Set the hypervisor_inspector in the ceilometer.conf to “powervm”

	Start the ceilometer-agent-compute on the compute server

Running Ceilometer-PowerVM Tests

This page describes how to run the Ceilometer-PowerVM tests. This page assumes you
have already set up an working Python environment for Ceilometer-PowerVM development.

With tox

Ceilometer-PowerVM, like other OpenStack projects, uses tox [http://tox.readthedocs.org/en/latest/] for managing the virtual
environments for running test cases. It uses Testr [https://wiki.openstack.org/wiki/Testr] for managing the running
of the test cases.

Tox handles the creation of a series of virtualenvs [https://pypi.python.org/pypi/virtualenv] that target specific
versions of Python.

Testr handles the parallel execution of series of test cases as well as
the tracking of long-running tests and other things.

For more information on the standard tox-based test infrastructure used by
OpenStack and how to do some common test/debugging procedures with Testr,
see this wiki page:

https://wiki.openstack.org/wiki/Testr

PEP8 and Unit Tests

Running pep8 and unit tests is as easy as executing this in the root
directory of the Ceilometer-PowerVM source code:

tox

To run only pep8:

tox -e pep8

Since pep8 includes running pylint on all files, it can take quite some time to run.
To restrict the pylint check to only the files altered by the latest patch changes:

tox -e pep8 HEAD~1

To run only the unit tests:

tox -e py27

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Ceilometer-PowerVM’s documentation!

 		
 Team and repository tags

 		
 Support for PowerVM Performance Monitoring

 		
 Problem Description

 		
 Inspector Description

 		
 End User Impact

 		
 Performance/Scalability Impacts

 		
 Other deployer impact

 		
 Developer impact

 		
 Implementation

 		
 Assignee(s)

 		
 Future lifecycle

 		
 Dependencies

 		
 References

 		
 Ceilometer-PowerVM Policies

 		
 Policies

 		
 Ceilometer-PowerVM Bugs

 		
 Contributing to Ceilometer-PowerVM

 		
 Code Reviews

 		
 Team and repository tags

 		
 Support for PowerVM Performance Monitoring

 		
 Indices and tables

 		
 Developer Guide

 		
 Internals and Programming

 		
 Setting Up a Development Environment

 		
 Usage

 		
 Testing

 		
 Running Ceilometer-PowerVM Tests

 		
 Indices and tables

_static/ajax-loader.gif

